

				アンテナ
アンテナに用い	いるパラメー	タ		設計目標
	定義	dB表示	大きさ	Γ=0.1
電圧反射係数 🚺	$\Gamma = \frac{Z_r - Z_0}{Z_r + Z_0}$	20 log Γ	≤0	- 20 dB
VSWR S	$S = \frac{1 + \Gamma }{1 - \Gamma }$		<i>S</i> ≥1	S = 1.222
反射減衰量 (リターンロス)	$L_{R} = \frac{1}{ \Gamma }$	$L_R = -20 \log \Gamma$	≥0	+ 20 dB
電力透過係数 <i>T</i> =	$\left(1 - \left \Gamma \right ^2 \right) = \frac{4}{\left(1 + \right)^2}$	$\frac{s}{s}^{2}$ 10 log T	≤0	- 0.0436 dB
反射損	$M = \frac{1}{T}$	10 log N	1 ≥0	+ 0.0436 dB
負荷への入力電力	$P_{in} = P_0 \left(1 - 1 \right)$	$\left[\left[\right] \right] \right]$	$P_{in} \leq P_0$	Pin= 0.99 Po
電源供	給電力 P_0			
	3			

									アン
Г	20 log Γ	VSWR	Pin/Po (%	,)	Γ	20 log Γ	VSWR	Pin/Po (%))
0.01	-40	1.02	99.99		0.26	-11.7	1.7	93.24	
0.02	-33.98	1.04	99.96		0.27	-11.4	1.74	92.71	
0.03	-30.46	1.06	99.91		0.28	-11.1	1.78	92.16	
0.04	-27.96	1.08	99.84		0.29	-10.8	1.82	91.59	
0.05	-26.00	1.11	99.75		0.3	-10.46	1.86	91	
0.06	-24.44	1.13	99.64		0.31	-10.17	1.9	90.39	_
0.07	-23.10	1.15	99.51		0.32	-9.90	1.94	89.76	
0.08	-21.94	1.17	99.36		0.33	-9.63	1.99	89.11	
0.09	-20.92	1.20	9.19		0.34	-9.37	2.03	88.44	
0.10	-20	1.22	99	_	0.35	-9.12	2.08	87.75	
0.11	-19.17	1.25	98.79		0.36	-8.87	2.13	87.04	
0.12	-18.42	1.27	98.56		0.37	-8.64	2.17	86.31	
0.13	-17.72	1.30	98.31		0.38	-8.4	2.23	85.56	
0.14	-17.08	1.33	98.04		0.39	-8.18	2.28	84.79	
0.15	-16.48	1.35	97.75		0.4	-7.96	2.33	84	
0.16	-15.92	1.38	97.44		0.41	-7.74	2.39	83.19	
0.17	-15.39	1.41	97.11		0.42	-7.54	2.45	82.36	
0.18	-14.89	1.44	96.76		0.43	-7.33	2.5	81.51	
0.19	-14.42	1.47	96.39		0.44	-7.13	2.57	80.64	
0.2	-13.98	1.5	96		0.45	-6.94	2.64	79.75	
0.21	-13.56	1.53	95.59		0.46	-6.74	2.7	78.84	
0.22	-13.15	1.56	95.16		0.47	-6.56	2.77	77.91	
0.23	-12.77	1.60	94.71		0.48	-6.38	2.85	76.96	
0.24	-12.40	1.63	94.24		0.49	-6.2	2.92	75.99	
0.25	-12.04	1.67	93.75		0.5	-6.02	3	75	

時間変動の無い場合、ある場合の支配方程式とその解の比較

電磁界成分の導出

球座標ベクトル公式 (宿題のヒント) $A = A_{r} a_{r} + A_{\theta} a_{\theta} + A_{\varphi} a_{\varphi}$ $\nabla \phi = a_{r} \frac{\partial \phi}{\partial r} + a_{\theta} \frac{\partial \phi}{r \partial \theta} + a_{\varphi} \frac{1}{r \sin \theta} \frac{\partial \phi}{\partial \varphi}$ $\nabla \cdot A = \frac{1}{r^{2} \partial r} \left(r^{2} A_{r} \right) + \frac{1}{r \sin \theta} \frac{\partial \left(A_{\theta} \sin \theta \right)}{\partial \theta} + \frac{1}{r \sin \theta} \frac{\partial A_{\varphi}}{\partial \varphi}$ $E = -j \omega \left(A + \frac{\nabla \nabla \cdot A}{k^{2}} \right)$ $H = \frac{1}{\mu_{0}} \nabla \times A$ $\nabla \times A = \frac{1}{r^{2} \sin \theta} \begin{vmatrix} a_{r} & r a_{\theta} & r \sin \theta a_{\varphi} \\ \partial \sigma & \partial \phi & \partial \phi \\ A_{r} & r A_{\theta} & r \sin \theta A_{\varphi} \end{vmatrix}$ I5

The set of the set

アンテナ Problem Poynting Vector $S = \frac{1}{2} \operatorname{Re} \left(E \times H^r \right) = a_r S_r(\theta, \varphi)$ に対して $S = a_r S_r(\theta, \varphi) = a_r \frac{A_0}{r^2} [W/m^2]$ $S = a_r S_r(\theta, \varphi) = a_r \frac{A_0 \sin \theta}{r^2} [W/m^2]$ $S = a_r S_r(\theta, \varphi) = a_r \frac{A_0 \sin^2 \theta}{r^2} [W/m^2]$ アンテナから放射される全電力 W=? 正規化された電力パターン P=? Answer

 $W = \iint_{S} S_{r}(\theta, \varphi) \, dS \qquad dS = r^{2} \sin \theta \, d\theta \, d\varphi \qquad P_{n}(\theta, \varphi) = \frac{S(\theta, \varphi)}{S(\theta, \varphi)_{\max}}$ $W = \int_{\varphi=0}^{2\pi} \int_{\theta=0}^{\pi} \frac{A_{0}}{r^{2}} r^{2} \sin \theta \, d\theta \, d\varphi = 2\pi \int_{\theta=0}^{\pi} A_{0} \sin \theta \, d\theta = 4\pi A_{0}$ $P_{n}(\theta, \varphi) = 1 \qquad \text{(isotropic antenna)}$ $W = \int_{\varphi=0}^{2\pi} \int_{\theta=0}^{\pi} \frac{A_{0} \sin \theta}{r^{2}} r^{2} \sin \theta \, d\theta \, d\varphi = 2\pi \int_{\theta=0}^{\pi} A_{0} \sin^{2} \theta \, d\theta = \pi^{2} A_{0}$ $P_{n}(\theta, \varphi) = \sin \theta$ $W = \int_{\varphi=0}^{2\pi} \int_{\theta=0}^{\pi} \frac{A_{0} \sin^{2} \theta}{r^{2}} r^{2} \sin \theta \, d\theta \, d\varphi = 2\pi \int_{\theta=0}^{\pi} A_{0} \sin^{3} \theta \, d\theta = \frac{8\pi}{3} A_{0}$ $(t = \cos \theta)$ $P_{n}(\theta, \varphi) = \sin^{2} \theta \qquad \text{(small dipole)}$

21

アンテナ 微小電流素子 / ? の結果を使う z 軸上の有限長電流による放射電界 I(z) $E_{\theta} = j \frac{\eta Il}{2 \lambda r} e^{-jkr} \sin \theta$ (**「**) が原点にある場合) 観測点 P $r' \neq 0$ だから $I \not l \Rightarrow I(z) \Delta z$ 位置の関数 (r, θ, ϕ) $\Delta E_{\theta} = j \frac{\eta I(z) \Delta z}{2 \lambda | \mathbf{r} - \mathbf{r}' |} e^{-jk | \mathbf{r} - \mathbf{r}' |} \sin \theta_0$ $\frac{L}{2}$ | **r - r**' | 電流素子の点 z と観測点の距離 θ_{0} z 軸上の電流素子と観測点のなす角度 全電流による放射電界は合成(重ね合わせの理) $E_{\theta} = \lim_{\Delta z \to 0} \sum \Delta E_{\theta} = \frac{\eta}{2\lambda} \int_{-\infty}^{L/2} \frac{I(z) e^{-jk} |r-r'| dz}{|r-r'|} \sin \theta_0$ *r>>*λ では $\sin \theta_0 = \sin \theta$ $k \mid \mathbf{r} - \mathbf{r}' \mid = k \, \mathbf{r} - k \, \mathbf{z} \cos \theta$ $E_{\theta} = j \frac{\eta \sin \theta}{2 \lambda r} e^{-jkr} \int_{-L/2}^{L/2} I(z) e^{-jkz \cos \theta} dz$ $\frac{1}{|\mathbf{r}-\mathbf{r}|} = \frac{1}{r}$

アンテナ

z 軸上の電流による放射電界

注1 積分

$$\int_{-\lambda/4}^{\lambda/4} \cos kz \, e^{-jkz \, \cos\theta} \, dz = \frac{1}{2} \int_{-\lambda/4}^{\lambda/4} \left(e^{-jkz} + e^{--jkz} \right) e^{-jkz \, \cos\theta} \, dz$$
$$= \frac{1}{2} \int_{-\lambda/4}^{\lambda/4} e^{-jk(\cos\theta + 1)z} \, dz + \frac{1}{2} \int_{-\lambda/4}^{\lambda/4} e^{-jk(\cos\theta - 1)z} \, dz$$
$$= \frac{1}{2} \frac{1}{-jk} \frac{1}{\cos\theta + 1} \left[e^{-j\frac{2\pi}{\lambda}(\cos\theta + 1)z} \right]_{-\lambda/4}^{\lambda/4} + \frac{1}{2} \frac{1}{-jk} \frac{1}{\cos\theta - 1} \left[e^{-j\frac{2\pi}{\lambda}(\cos\theta - 1)z} \right]_{-\lambda/4}^{\lambda/4}$$
$$= \frac{1}{k} \frac{1}{\cos\theta + 1} \sin \frac{\pi}{2}(\cos\theta + 1) + \frac{1}{k} \frac{1}{\cos\theta - 1} \sin \frac{\pi}{2}(\cos\theta - 1)$$
$$= \frac{1}{k} \frac{1}{\cos\theta + 1} \cos \left(\frac{\pi}{2} \cos\theta \right) - \frac{1}{k} \frac{1}{\cos\theta - 1} \cos \left(\frac{\pi}{2} \cos\theta \right)$$
$$= \frac{2}{k} \frac{1}{\sin^2\theta} \cos \left(\frac{\pi}{2} \cos\theta \right) = \frac{\lambda}{\pi} \frac{1}{\sin^2\theta} \cos \left(\frac{\pi}{2} \cos\theta \right)$$

25

長さLの線では、端部で0となる電流分布を仮定

$$\begin{aligned} z = \frac{L}{2} & I(z) = I_0 \sin\left[k\left(\frac{L}{2} - z\right)\right] \quad \text{for } 0 \le z \le \frac{L}{2} \\ z = 0 & I(z) & I(z) = I_0 \sin\left[k\left(\frac{L}{2} + z\right)\right] \quad \text{for } 0 \le z \le \frac{L}{2} \\ z = -\frac{L}{2} & I(z) = I_0 \sin\left[k\left(\frac{L}{2} + z\right)\right] \quad \text{for } 0 \le z \le \frac{L}{2} \\ dE_0 = \frac{jk\eta}{4\pi} \frac{I_0}{2\pi} \frac{e^{-jkr}}{r} \sin \theta e^{-jkz\cos\theta} dz \begin{cases} \sin\left[k\left(\frac{L}{2} - z\right)\right] & \text{for } 0 \le z \le \frac{L}{2} \\ \sin\left[k\left(\frac{L}{2} + z\right)\right] & \text{for } -\frac{L}{2} \le z \le 0 \end{cases} \end{aligned}$$

$$\mathbf{\mathfrak{TR}} \qquad E_0 = \int_0^{\frac{L}{2}} dE_0 + \int_{-\frac{L}{2}}^0 dE_0 = j60 I_0 \frac{e^{-jkr}}{r} \left[\frac{\cos\left(\frac{kL}{2}\cos\theta\right) - \cos\left(\frac{kL}{2}\right)}{\sin\theta} \right] \\ \underline{\mathfrak{L2}} \quad \underline{\mathfrak{R3}} \end{aligned}$$
Poynting Power
$$S_r(\theta) = \frac{1}{2\eta} \left| E_\theta \right|^2 = \frac{15 J_0^2}{\pi r^2} \left[\frac{\cos\left(\frac{kL}{2}\cos\theta\right) - \cos\left(\frac{kL}{2}\right)}{\sin\theta} \right]^2 \end{aligned}$$

$$f = \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \sin \left[k \left(\frac{L}{2} - |z| \right) \right] e^{-jkz \cos \theta} dz}{\left[-\frac{L/2}{2} \sin \left[k \left(\frac{L}{2} - z \right) \right] e^{-jkz \cos \theta} dz + \int_{-L/2}^{0} \sin \left[k \left(\frac{L}{2} + z \right) \right] e^{-jkz \cos \theta} dz}{\left[-\frac{L/2}{2} \sin \left[k \left(\frac{L}{2} - z \right) \right] e^{-jkz \cos \theta} dz + \int_{0}^{L/2} \sin \left[k \left(\frac{L}{2} - z \right) \right] e^{-jkz \cos \theta} dz}{\left[-\frac{L/2}{2} \sin \left[k \left(\frac{L}{2} - z \right) \right] \cos \left(kz \cos \theta \right) dz}{\left[-\frac{L/2}{2} \sin \left[k \left(\frac{L}{2} - z \right) \right] \cos \left(kz \cos \theta \right) dz}{\left[-\frac{L/2}{2} \sin \left[k \left(\frac{L}{2} - z \right) \right] \cos \left(kz \cos \theta \right) dz}{\left[-\frac{L}{2} \sin \left[k \left(\frac{L}{2} - (1 - \cos \theta) z \right) \right] dz + \int_{0}^{L/2} \sin \left[k \left(\frac{L}{2} - (1 + \cos \theta) z \right) \right] dz}{\left[-\frac{1}{k} \frac{1}{1 - \cos \theta} \cos \left[k \left(\frac{L}{2} - (1 - \cos \theta) z \right) \right] \right]_{0}^{L/2}} + \frac{1}{k} \frac{1}{1 + \cos \theta} \cos \left[k \left(\frac{L}{2} - (1 + \cos \theta) z \right) \right] \right]_{0}^{L/2}}{\left[-\frac{1}{k} \left(\frac{1}{1 - \cos \theta} + \frac{1}{1 + \cos \theta} \right) \left[\cos \left(\frac{kL}{2} \cos \theta \right) - \cos \frac{kL}{2} \right]}{\left[-\frac{\lambda}{\pi \sin^{2} \theta} \left[\cos \left(\frac{kL}{2} \cos \theta \right) - \cos \frac{kL}{2} \right]} \right]$$

<section-header><section-header><complex-block>

アンテナ 開口面アンテナの扱い 開口面に等価波源をおく考え方 等価波源 Ħ 境 |界 | (ε_0, μ_0) (ϵ_0, μ_0) 導波管 自由空間 入射波 透過波 $\frac{E_t}{H_t} = \frac{\eta_0}{\sqrt{1 - (\lambda/2a)^2}}$ $\frac{\underline{E}_{t}}{H_{t}} = \sqrt{\frac{\mu_{0}}{\varepsilon_{0}}} = \eta_{0}$ 入射波 透過波 J $\boldsymbol{E}_i + \boldsymbol{E}_r = \boldsymbol{E}_t$ 領域|| 領域l E_i , H_i 境界面 $\boldsymbol{E}_t, \boldsymbol{H}_t$ 反射波 $\boldsymbol{H}_i + \boldsymbol{H}_r = \boldsymbol{H}_t$ $\boldsymbol{J} = \boldsymbol{n} \times (\boldsymbol{H}_{t} - \boldsymbol{H}_{r}) = \boldsymbol{n} \times \boldsymbol{H}_{i}$ E_r, H_r $\boldsymbol{J}_{\boldsymbol{m}} = -\boldsymbol{n} \times (\boldsymbol{E}_{t} - \boldsymbol{E}_{r}) = -\boldsymbol{n} \times \boldsymbol{E}_{i} \quad [V/m]$ 領域Ⅱ 領域I

アンテナ

放射効率

$$\begin{aligned} & k = \frac{P_{rad}}{P_{in}} = \frac{P_{rad}}{P_{rad} + P_{loss}} & k: efficiency factor (0 \le k \le 1). \\ & Alp L \in aph M balantian b$$

	Uniform Distribution Aperture on Ground Plane	Uniform Distribution Aperture in Free-Space	TE ₁₀ -Mode Distribution A perture on Ground Plane
Aperture distribution of tangential c omponents (analytical)	$\mathbf{E}_{a} = \left\{ \mathbf{\hat{a}}_{y} E_{0} \right\} \xrightarrow{-a/2 \le x' \le a/2} -b/2 \le y' \le b/2$	$ \begin{aligned} \mathbf{E}_{a} &= \mathbf{\hat{a}}_{y} E_{0} \\ \mathbf{H}_{a} &= -\mathbf{\hat{a}}_{x} \frac{E_{0}}{\tau \tau} \end{aligned} \\ \begin{vmatrix} -a/2 \leq x' \leq a/2 \\ -b/2 \leq y' \leq b/2 \end{vmatrix} $	$\mathbf{E}_{a} = \mathbf{\hat{s}}_{y} E_{0} \cos\left(\frac{\pi}{a} x\right)^{-a/2 \le x' \le a/2}_{-b/2 \le y' \le b/2}$
Aperture distribution of tangential components (graphical)		x x x x y	
Equivalent	$\mathbf{M}_{s} = \begin{cases} -2 \mathbf{\hat{n}} \times \mathbf{E}_{s} \\ 0 \\ \mathbf{J}_{s} = 0 \end{cases} \overset{-a/2 \leq x' \leq a/2}{\overset{-b/2 \leq y' \leq b/2}{\underset{\text{else where}}{\overset{-b/2 \leq y' \leq b/2}{\underset{\text{else where}}{\overset{-b/2 \leq y' \leq b/2}{\underset{\text{else where}}{\overset{-b/2 \leq y' \leq b/2}{\underset{\text{else where}}}}}$	$ \begin{aligned} \mathbf{M}_{s} &= -\mathbf{\hat{n}} \times \mathbf{E}_{a} \\ \mathbf{J}_{s} &= -\mathbf{\hat{n}} \times \mathbf{H}_{a} \\ & -b/2 \leq y' \leq b/2 \\ \mathbf{M}_{s} \approx \mathbf{J}_{s} \approx 0 \text{elsewhere} \end{aligned} $	$\mathbf{M}_{s} = \begin{cases} -2 \mathbf{\hat{n}} \times \mathbf{E}_{s} \\ 0 \end{cases} \begin{cases} -a/2 \le x' \le a/2 \\ -b/2 \le y' \le b/2 \\ elsewhere \\ \mathbf{J}_{s} = 0 \\ everywhere \end{cases}$
Far-zone fields	$E_r = H_r = 0$	$E_r = H_r = 0$	$E_r = H_r = 0$
$X = \frac{k a}{2} \sin \theta \cos \phi$	$E_{\theta} = C \sin \phi \frac{\sin X}{X} \frac{\sin Y}{Y}$	$E_{\theta} = \frac{C}{2} \sin \phi \left(1 + \cos \theta \right) \frac{\sin X}{X} \frac{\sin Y}{Y}$	$E_{\theta} = -\frac{\pi}{2} C \sin\phi \frac{\cos X}{(X)^2 - \left(\frac{\pi}{2}\right)^2} \frac{\sin Y}{Y}$
$Y = \frac{kb}{2}\sin\theta\cos\phi$	$E_{\phi} = C \cos \theta \cos \phi \frac{\sin X}{X} \frac{\sin Y}{Y}$	$E_{\phi} = \frac{C}{2} \cos \phi \left(1 + \cos \theta\right) \frac{\sin X}{X} \frac{\sin Y}{Y}$	$E_{\phi} = -\frac{\pi}{2} C \cos \theta \cos \phi \frac{\cos X}{(X)^2 - (\frac{\pi}{2})^2} \frac{\sin Y}{Y}$
$C = \int \frac{a b k E_0 e^{-jkr}}{2 \pi r}$	$ \begin{split} H_{\phi} &= - E_{\theta} / \eta \\ H_{\phi} &= E_{\theta} / \eta \end{split} $	$H_{\phi} = -E_{\theta}/\eta$ $H_{\phi} = E_{\theta}/\eta$	$H_{\phi} = -E_{\theta}/\eta$ $H_{\phi} = E_{\theta}/\eta$

アンテナ

方形開口アンテナからの放射 ー2-

Half-power beamwidth (degrees)	E-Plane b >> λ	50.6 b/L	$\frac{50.6}{bh}$	$\frac{50.6}{b_{\lambda}}$	
	H-Pl ane a >> λ	50.6 a/2	$\frac{50.6}{a}$	$\frac{68.8}{a_{\lambda}}$	
First null beamwidth (degrees)	<i>E</i> -Plane b >> λ	114.6 b/2	114.6 bh	$\frac{114.6}{b/\lambda}$	
	H-Pl ane a >> λ	114.6 4/2	$\frac{114.6}{a\lambda}$	$\frac{171.9}{a\lambda}$	
First side lobe max. (to main max.) (dB)	E-Plane	- 13.26	- 13.26	- 13.26	
	H-Pl ane	-13.26 $a \gg \lambda$	-13.26 $a \gg \lambda$	-23 $a \gg \lambda$	
Directivity D (dimensionles	⁰ ss)	$\frac{4\pi}{\lambda^2}$ (area) = 4 $\pi \left(\frac{a b}{\lambda^2}\right)$	$\frac{4\pi}{\lambda^2}$ (area) = 4 $\pi \left(\frac{a}{\lambda^2}\right)$	$\frac{8}{\pi^2} \left[4 \pi \left(\frac{a b}{\lambda^2} \right) \right] = 0.81 \left[4 \pi \left(\frac{a b}{\lambda^2} \right) \right]$	

アンテナ

方形開口アンテナからの放射 ー1-

アンテナ 素子間隔は? $d = \frac{\lambda}{2}$ と選べ $d \neq \frac{\lambda}{2} \Rightarrow u = k d \cos \theta$ $d = \frac{\lambda}{2} \Rightarrow u = k d \cos \theta = \frac{2\pi d}{\lambda} \cos \theta \Rightarrow \pi \cos \theta$ $Array Factor = \frac{\sin\left[\left(N + \frac{1}{2}\right)kd\cos\theta\right]}{\sin\left(\frac{kd}{2}\cos\theta\right)}$ $Array Factor_{d=\frac{\lambda}{2}} = \frac{\sin\left[\left(N + \frac{1}{2}\right)\pi\cos\theta\right]}{\sin\left(\frac{\pi}{2}\cos\theta\right)}$ if $d > \frac{\lambda}{2}$ then $\frac{k d \cos\theta}{2} > \frac{\pi}{2}\cos\theta$ \Rightarrow there exist θ $\sin\left(\frac{kd}{2}\cos\theta\right) = 0$ $\beta \oplus \delta 0 \implies grating lobe 0 \Re \pm \delta$ $T = \frac{k d \cos\theta}{2}$ then there arises antenna coupling 相互間素子結合が起こり、アンテナ素子の特性が変わる φ 好ましくない

宿題

5 素子のアレイアンテナが ある.各素子に位相 $\varphi = k \cos \theta_0$ だけ変化させると 素子電流は次の式になる $I(z) = I_0 \exp(-jk \cos \theta_0 z)$ この場合の 合成電界(放射パターン) の表現式を導出しなさい

53

アンテナ

